Tujuan Pembelajaran
Modul ini membahas instrumen pendapatan tetap yaitu obligasi. Setelah
mempelajari modul ini, mahasiswa diharapkan mampu menghitung
nilai obligasi dan hasil obligasi. Lebih khusus,
mahasiswa diharapkan mampu:
KEGIATAN BELAJAR 1:
PENGERTIAN OBLIGASI
A. MACAM-MACAM OBLIGASI
–> Obligasi: hutang jangka panjang yang akan dibayar saat tempo +
bunga tetap.
–> When an investor purchases a bond, that person is, for all
intents and purposes, making a loan to the bond issuer.
–> Bonds issues are used to raise funds and can be issued by
corporations, governments, or even subagencies of governments (including
local municipalities)
- Obligasi Pemerintah: SUN, SBSN, ORI, SBSN Ritel
- Obligasi Municipal: dikeluarkan oleh Pemda provinsi, kota,
kabupaten, bandara, atau universitas negeri.
- Obligasi Perusahaan: dikeluarkan oleh perusahaan swasta sebagai
sekuritas senior
- dengan kupon (bunga)atau tidak
- obligasi termin (term bond) dan obligasi seri (serial bond)
More about bond
- As with any type of loan, the borrowing party is expected to offer
something to the lender in exchange for their time and trouble.
- In this case, the bond-issuing entity will agree not only to repay
the original face value of the loan on a specific date (the maturity of
the bond) but also to pay the lender interest—or, in bond terminology,
coupon payments.
- Coupon payments are designed to make a bond purchase more acceptable
for investors by helping compensate them for the time value of
money.
- Because investors are parting with money that they have right now in
order to make the initial bond purchase but will not see repayment of
principal until the maturity date of the bond, they will experience the
negative impact of time value over the bond term.
- When a bond issuer offers periodic coupon payments, this helps
offset the negative effect of the delayed receipt of the principal
amount for the investor.
- Also, because coupon payments will be coming to the investor
throughout the term of the bond, essentially in installment payments (an
annuity), the time value of money plays a critical role in bond
transactions and in calculating bond valuation.
- One way to look at bond investments is to consider the fact that any
investor who purchases a bond is essentially buying a future cash flow
stream that the bond issuer (or borrower) promises to make as per
agreement.
- Because bonds provide a set amount of cash inflow to their owners,
they are often called fixed-income securities.
- Thus, future cash flows from the bond are clearly stated per
agreement and fixed when the bond sale is completed.
B. RISIKO OBLIGASI
- Kemungkinan default/obligasi tidak terbayar
- Berdasarkan peringkat oleh lembaga pemeringkat: Moody’s Investor
Service, Standard and Poor, PT. Fitch Ratings Indonesia, PT
ICRA.
- Peringkat BERBEDA antar lembaga:
- S&P: AA, A, BBB, BB, B, CCC, CC, C, D.
- Moody: Aaa, Aa, A, Bbb, Bb, B, Ccc, Cc, C, D
- Secara umum dibagi dua:
- investment grade securities: mampu membayar prinsipal dan
bunga dan
- non-investment grade securities: obligasi sampah (junk
bond), risiko defaultnya tinggi.
KEGIATAN BELAJAR 2:
PENILAIAN OBLIGASI
A. NILAI INSTRINSIK OBLIGASI
–> Nilai instrinsik: perkiraan nilai sebenarnya dari obligasi.
Obligasi Membayar Kupon
- Kupon dibayar secara periodik: setahun sekali, setahun dua kali,
setahun 4 kali.
\[NO^* = \frac {K_1}{(1+i)^1} + \frac
{K_2}{(1+i)^2} + \frac {K_3}{(1+i)^3}+...+ \frac {K_n}{(1+i)^n}+\frac
{NJT_n}{(1+i)^n}\] Notasi:
- NO* = nilai instrinsik obligasi,
- i = suku bunga diskonto
- Kt = nilai kupon ke-t, t=1,2…n, yaitu tingkat suku bunga
kupon dikalikandengan nilai par obligasi
- NJTn = nilai jatuh tempo obligasi
Obligasi Tidak Membayar Kupon
- Obligasi diskon murni (pure diskon bond)
- Dijual dengan harga diskon
\[NO^* =\frac
{NJT_n}{(1+i)^n}\]
B. HASIL OBLIGASI
- Hasil Sekarang (current yield)
\[Hasil\ Sekarang =\frac {Kupon}{Harga\
Pasar\ Obligasi}\]
Hasil Sampai Maturiti (yield to maturity)
\[NO = \frac {K_1}{(1+YTM)^1} + \frac
{K_2}{(1+YTM)^2} + \frac {K_3}{(1+YTM)^3}+...+ \frac
{K_n}{(1+YTM)^n}+\frac {NJT_n}{(1+YTM)^n}\]
\[NO = \frac
{NJT_n}{(1+YTM)^n}\]
Hasil Sampai ditarik (yield to call)
\[NO = \frac {K_1}{(1+YTC)^1} + \frac
{K_2}{(1+YTC)^2} + \frac {K_3}{(1+YTC)^3}+...+ \frac
{K_n}{(1+YTC)^n}+\frac {NJT_n}{(1+YTC)^n}\]
Corrections
If you see mistakes or want to suggest changes, please create an issue on the source repository.
Citation
For attribution, please cite this work as
Herlambang (2022, May 14). Teori Portofolio dan Analisis Investasi: Instrumen Pendapatan Tetap. Retrieved from https://bangtedy.github.io/porto/posts/2022-05-14-instrumen-pendapatan-tetap/
BibTeX citation
@misc{herlambang2022instrumen,
author = {Herlambang, Tedy},
title = {Teori Portofolio dan Analisis Investasi: Instrumen Pendapatan Tetap},
url = {https://bangtedy.github.io/porto/posts/2022-05-14-instrumen-pendapatan-tetap/},
year = {2022}
}